Cleaning and Exploring Big Data using PySpark

By the end of this project, you will learn how to clean, explore and visualize big data using PySpark. You will be using an open source dataset containing information on all the water wells in Tanzania. I will teach you various ways to clean and explore your big data in PySpark such as changing column’s data type, renaming categories with low frequency in character columns and imputing missing values in numerical columns. I will also teach you ways to visualize your data by intelligently converting Spark dataframe to Pandas dataframe.

Cleaning and exploring big data in PySpark is quite different from Python due to the distributed nature of Spark dataframes. This guided project will dive deep into various ways to clean and explore your data loaded in PySpark. Data preprocessing in big data analysis is a crucial step and one should learn about it before building any big data machine learning model.

https://www.classcentral.com/course/clean-explore-visualize-big-data-python-spark-21657


Comments

Leave a Reply

Your email address will not be published. Required fields are marked *

Big Data Labs
Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.